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1. Introduction

In a companion paper [1] we have explored a recent proposal [2] for an S-matrix description

of transplanckian scattering in four-dimensional spacetime. The proposal is based on an

approximate resummation of the semi-classical corrections to the leading eikonal approxi-

mation [3] and amounts to solving the equations of motion of an effective action introduced

quite sometime ago [4, 5]. In a suitable limit, the longitudinal dynamics can be factored

out leaving behind an effective dynamics in the “transverse” two-dimensional space.

In [1] we considered, quite systematically, the case of the axisymmetric (central) col-

lision of two extended sources/beams. This case has several advantaged over the original

problem of a two-particle collision at non-vanishing impact parameter:

• The partial differential equations (PDE’s) reduce to ordinary differential equations

(ODE’s) making the problem affordable by analytic and numerical techniques, with-

out having to make either an azimuthal-average approximation [2] or to resort to

advanced numerical techniques [6] .

• The IR-sensitive graviton polarization, which was neglected by hand in [2], is simply

not produced in the axisymmetic case [1].

• We can consider a wide variety of initial states by playing with the many (shape and

intensity) parameters chracterizing the sources and check for the existence of critical

surfaces in this multidimensional space. The results can then be compared with those

coming from closed trapped surface (CTS) criteria [7, 8] and will be tested, hopefully

in the near future, against numerical GR calculations (see [9, 10] for a few results

already available for this case).

– 1 –
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The results of [1], based on a position-space analysis, gave further support to the con-

clusions of [2]. In particular, we were able to prove a one-way relation between the CTS

criterion of [8] and the criticality condition in the ODE system. We could also determine

quite precisely the critical surfaces in a variety of cases and found a good quantitative agree-

ment with CTS-based criteria [8]. Finally, we confirmed that, above those critical lines, a

new absorption of the elastic S-matrix turns on with a universal behaviour reminiscent of

Choptuik’s critical exponent [11].

In this paper we complement our previous work [1] by a momentum-space analysis

according to the following outline: in section 2 we present the momentum space formulation

of the extended-source problem and, after specializing to the axisymmetric case, we give

the explicit form of the action and of the equations of motion. In section 3 we recall

some interesting extended sources already considered in [1] adding their momentum-space

form. In section 4 we study numerically the field equations, determine the critical lines in

parameter space, and compare them with the position-space results of [1]. In section 5 we

discuss the spectrum of the emitted gravitons starting from the perturbative regime and

until one approaches the critical lines. In section 6 we present an attempt to extend the

solutions in the (presumed) BH-phase.

2. Momentum space action and field equations

We recall from [1] the position-space action of [2] generalized to extended sources:

A
2πGs

=

∫

d2x

[

a(x)s̄(x) + ā(x)s(x) − 1

2
∇iā∇ia

]

− (πR)2

2

∫

d2x
(

(∇2φ)2 + 2φ(∇2a ∇2ā −∇i∇ja ∇i∇j ā)
)

, (2.1)

with the three real fields a, ā and φ representing the two longitudinal and the single,

IR-safe, transverse component of the gravitational field, respectively.

The center of mass energy
√

s provides the overall normalization factor 2πGs = π
2GR2,

while the two sources s(x), s̄(x) are normalized by
∫

d2x s(x) =
∫

d2x s̄(x) = 1. In order

to go to momentum space we can either start from (2.1) or generalize directly eq. (5.2)

of [2]. The result is:

πA

Gs
=

∫

d2
k

k2
[β1(k)s2(−k) + β2(k)s1(−k) − β1(k)β2(−k)]

−(πR)2

2

∫

d2
k

[

1

2
h(k)h(−k) − h(−k)H(k)

]

, (2.2)

where the FT of the sources (still denoted by si) are normalized by requiring si(0) = 1.

Furthermore,

β1(k) =
k2a(k)

2
, β2(k) =

k2ā(k)

2
, h(k) = −k2φ(k) , (2.3)

H(k) ≡ 1

π2k2

∫

d2
k1d

2
k2δ(k − k1 − k2)β1(k1)β2(k2)sin

2θ12 , (2.4)

– 2 –
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and θ12 is the angle between the two transverse momenta k1 and k2.

If we now specialize to the axisymmetric case where sources and fields depend only

upon k2
i , we can use the following relations:

∫

d2k = π

∫

dk2 ,

∫

d2
k1d

2
k2δ(k − k1 − k2)

sin2θ12

k2
=

1

4

∫

λ≥0

dk2
1dk2

2

k2
1k

2
2k

2

√

λ(k2
1 , k

2
2 , k

2) , (2.5)

where

λ(k2
1 , k

2
2 , k

2) = (2k2
1k

2
2 + 2k2k2

2 + 2k2
1k

2 − k4 − k4
1 − k4

2) , (2.6)

and we have used the identity:

sin2θ12 =
λ(k2

1 , k
2
2 , k

2)

4k2
1k

2
2

, (2.7)

together with the change of variable (at fixed k2, k2
1)

dk2
2 = d(k − k1)

2 = 2|k||k1| sin θk1dθk1 = 2|k|1|k2| sin θ12dθk1 . (2.8)

One thus arrives at the final form of the axially-symmetric effective action:

A

Gs
=

∫

dk2

k2

[

β1(k
2)s2(k

2) + β2(k
2)s1(k

2) − β1(k
2)β2(k

2)
]

−(πR)2

2

∫

dk2 1

2
h(k2)h(k2) +

R2

8

∫

dk2dk2
1dk2

2

k2
1k

2
2k

2

√

λ(k2
1 , k

2
2 , k

2)h(k2)β1(k
2
1)β2(k

2
2) ,(2.9)

whose equations of motion read:

h(k2) =
1

4π2

∫

dk2
1dk2

2

k2k2
1k

2
2

√

λ(k2
1 , k

2
2 , k

2)β1(k
2
1)β2(k

2
2) ,

βi(k
2) = si(k

2) +
R2

8

∫

dk2
1dk2

2

k2
1k

2
2

√

λ(k2
1 , k

2
2 , k

2)h(k2
1)βi(k

2
2) . (2.10)

It is not a completely trivial exercise to show directly the equivalence of these equations

with the corresponding ones in position-space [1] (where a dot stands for d/dr2),

ȧi = − 1

2πρ(r)

Ri(r)

R
,

ρ̈ =
1

2
(2πR)2ȧ1ȧ2 =

1

2

R1(r)R2(r)

ρ2(r)
,

Ri(r) = R

∫

|x|2≤r2

d2x si(x) . (2.11)

The proof, not reported here, makes use of the following (known?) integral of three Bessel

functions (that we have checked numerically):

∫ ∞

0
drJ1(rk)J1(rk1)J1(rk2) =

1

2π

√

λ(k2
1 , k

2
2 , k

2)

kk1k2
Θ(λ) . (2.12)

– 3 –
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3. Examples of source profiles

In this section we list various extended sources already introduced in [1] and give their

momentum representations.

A. As a first class, consider finite-size sources with the following profiles:

s1(x) = s2(x) =
L4d

π (L4d + r4(1 − d))3/2
Θ(L − r) . (3.1)

Later, without lack of generality, we shall be fixing the transverse size of the two identical

beams L to be 1. One can easily verify that these sources satisfy our normalizations and

that

π

∫ r2

0
dρ2s(ρ) = R(r/L)/R =

r2

(L4d + r4(1 − d))1/2
, π

∫ L2

0
s(r)dr2 = 1 . (3.2)

Once Fourier transformed to momentum space and normalized according to the pre-

scription of section 2, the above sources become (k = |k|):

s1(k) = s2(k) =

∫ L2

0 dr2J0(kr)s(r)
∫ L2

0 dr2s(r)
=

∫ L2

0
dr2J0(kr)

L4d

(L4d + r4(1 − d))3/2
. (3.3)

In particular, for two homogeneous beams (d = 1) we have:

s1(k) = s2(k) =

∫ L2

0
dr2J0(kr) =

2

kL
J1(kL) . (3.4)

B. Point-like sources are difficult to deal with numerically, especially in momentum

space. We introduce therefore Gaussian-smeared versions of the point and ring-like sources

considered in [1]:

s1(x) =
1

N1
exp

(

− r2

2σ2

)

Θ(L1 − r) , s2(x) =
1

N2
exp

(

−(r − L2)
2

2σ2

)

Θ(L2 − r),

N1 = 2πσ2

(

1 − exp

(−L2
1

2σ2

))

, N2 = 2π

(

σ2

(

exp

(−L2
2

2σ2

)

− 1

)

+ σL2

√

π

2
Erf

L2√
2σ

)

(3.5)

When σ → 0 (∞) such configuration reduces to the one of the point-ring (two homogeneous

beams) case. The corresponding Fourier transforms are:

si(k) = 2π

∫ Li

0
rdrJ0(kr)si(x) . (3.6)

C. Another interesting example is that of gaussian sources concentrated at r = 0.

They correspond to:

si(x) =
1

2πL2
i

exp

(

− r2

2L2
i

)

,
Ri(r)

R
= 1 − exp

(

− r2

2L2
i

)

, (3.7)

or, in momentum space, to:

si(k) = exp

(

−k2L2
i

2

)

. (3.8)

– 4 –
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4. Numerical solutions and comparison with x-space results

There are two ways to solve the non-linear system (2.10). One may use an itera-

tive(recursive) procedure suggested by the form of the equations, or treat them (after

discretization) as an algebraic system of polynomial equations of third order. The two

approaches are to some extent complementary. The recursion turns out to be convergent

only in the dispersive phase, and can therefore be used to determine the inter-phase bound-

ary in parameter space. The algebraic approach allows to explore also the BH phase by

generating genuine complex solutions of the system. It can also be cross checked, of course,

with the recursive method in the dispersive phase.

Both approaches rely on a momentum discretization procedure. As a first step, we

introduce new variables which span unit intervals and are thus convenient for that purpose:

x =
1

1 + k1L
, y =

1

1 + k2L
, v =

1

1 + kL
. (4.1)

Here L is the size of the two identical sources (A, B from the previous section) or of

one of them (L1 in the case C). In the following we set L = 1. In the new variables

equations (2.10) read:

h(v) =
1

π2

∫

T

dxdy

x(1 − x)y(1 − y)

v2

(1 − v)2

√

λ(x, y, v)β1(x)β2(y) ,

βi(v) = si(v) +
R2

2

∫

T

dxdy

x(1 − x)y(1 − y)

√

λ(x, y, v)h(x)βi(y) . (4.2)

At fixed v the x, y integrals are over the triangular region T which is bounded by three

hyperbolas

0 < v < 1, 0 < x < 1, ymin(x, v) < y < ymax(x, v), (4.3)

ymin(x, v) =
xv

x + v − xv
ymax(x, v) =

{

xv
v−x+xv x < v

xv
x−v+xv x ≥ v

(4.4)

Next, we discretize the variables

u −→ ui =
1

2n
+

i − 1

n
, i = 1, . . . , n, u = x, y, v , (4.5)

and turn the integral equations into a set of 3n algebraic equations

fi = si +
R2

2
Σn

j,k=1w
(b)
i,j,kf2n+ifi , (4.6)

fn+i = sn+i +
R2

2
Σn

j,k=1w
(b)
i,j,kf2n+ifn+i , (4.7)

f2n+i =
1

π2
Σn

j,k=1w
(h)
i,j,kfifn+i , (4.8)

where the weights w are the discretized versions of the kernels ∗ measure in the

corresponding continuous equations

w(b)(i, j, k) =
λ(xj , yk, vi)

xj(1 − xj)yk(1 − yk)
Area(i, j, k) , (4.9)

w(h)(i, j, k) =
λ(xj , yk, vi)

xj(1 − xj)yk(1 − yk)(1/vi − 1)2
Area(i, j, k) , (4.10)

– 5 –
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d 0.5 1.0 1.6 2.5 4.0

A-x 0.419 0.471 0.502 0.528 0.550

A-p 0.429 0.476 0.499 0.501 0.477

σ 0.01 0.1 0.2 0.3 3.0

B-x 0.615 0.572 0.525 0.486 0.470

B-p 0.058 0.436 0.501 0.489 0.476

ρ 0.25 0.333 0.5 1.0 2.0 3.0 4.0

C-x .810 .816 .821 .823 .821 .816 .810

C-p .823 .833 .850 .841 .838 .840 .832

Table 1: (R/L)c for a range of sizes of the power-like and Gaussian sources: a comparison between

configuration and momentum-space results. A, B and C label sources as discussed in section 3. In

the case C: ρ = L2/L1 and the critical value of the ratio 2R/(L1 + L2) is shown.

and the Area(i, j, k) is the area of the intersection of a small, 1/n2, square with the “tri-

angle” T if the center of the square (xj , yk) is inside T , and zero if the center is outside T .

As already remarked, these equations can be used either to set up a recursive procedure,

or can be directly solved numerically. The latter approach, dubbed the “algebraic method”,

works in both the BH and the dispersive phase.

In the first two (A and B) rows of table 1 we compare a sample of critical values of R

(in units of L) as determined by configuration [1] and momentum space methods. In the

latter Rc is defined as a point where the recursion (4.6) diverges. As such it depends on

the length of a trajectory n and in principle requires extrapolation to n = ∞. In the table

we used n ≤ 80.

For extended sources both approaches are consistent meaning that at n ∼ 50 − 80

momentum space estimates have already converged. However, for narrower sources, mo-

mentum method requires a yet finer discretization. This is to be expected, since a finite

mesh in momentum, say ∆p, limits the spatial resolution to ∆x > 1/∆p. In such cases

one has to extrapolate numerical data from the case of extended sources as done in [6].

In the following, we shall be discussing only homogenous beams where a finite n ∼ 50 is

adequate. Notice again the two special cases mentioned earlier, namely d = 1(∞) and

σ = ∞(0) which correspond to the scattering of homogeneous beams and that of a par-

ticle and a ring. The critical radii for these cases (Rc ∼ .47 and Rc = 21/23−3/4 ∼ .62

respectively) were obtained in [2] and agree with the ones quoted in the table except for

the momentum study of the infinitely narrow sources which was to be expected.

The third row of the table summarizes the head-on collision of the two central, gaussian

sources with different widths (C). The problem is symmetric with respect to the interchange

L1 ↔ L2 therefore we display Rc in units of (L1+L2)/2. Agreement between x- and p-space

methods is quite satisfactory. The configuration space technique used in [1] was manifestly

symmetric under the interchange of L1 and L2 as reflected in the table. However, in the

momentum space calculations we have deliberately used only one source size as a scale. The

resulting small asymmetry gives an idea of the sensitivity to the discretization parameter

– 6 –
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k

0.05

0.1

0.15

0.2

0.25

2
����������������

R3 
�!!!s

dN
�������

dk

Figure 1: Scattering of two homogeneous beams of size Li = 1. Inclusive spectra |k||h(k)|2 of

emitted gravitons, as a function of |k| close to criticality. Bottom to top: R = 0.44, 0.45, 0.46, 0.47,

with Rc = 0.470673. The two curves for each R are for n = 60 and n = 70.

n (which was not so large here, n ≤ 20).

Finally, we emphasize a very weak dependence of [2R/(L1 + L2)]c on ρ. This confirms

the observation, made already in [1], that the critical line is remarkably linear in the

(L1, L2) plane indicating that a simple sum L1 + L2 controls the concentration of energy

in a large part of parameter space.

5. Spectrum of emitted gravitons

Let us recall, from [2], that the graviton spectrum is determined in terms of h(k) through:

1

σT

dσ

dk2 dy
∼ GsR2|h(k)|2 . (5.1)

In figure 1 we show a suitably normalized transverse-energy distribution of gravitons,

|k|h(k)2 ∼ dσ
d|k| , as generated from the iterations (4.6). The two adjacent curves for each R

give an idea about the residual dependence on the “volume” n. As usual, the convergence

with n is slower in the vicinity of the critical point, but the figure suggests that the

behaviour near Rc is rather regular. In particular there is no indication for a buildup of

any divergence in the spectrum as R → R−
c .

A similar conclusion follows from figure 2 where the density profile of the gravitational

field (πR)4rh(r)2 = r(1− ρ̇(r))2 in transverse distance r is shown. The numerical calcula-

tions were done in configuration space following [1]. There is no “finite volume”, n, in this

case and we can concentrate on the dependence on R. Again, no singularity in r develops

as R → Rc and we can define a smooth limiting distribution at the critical point R−
c . Note

however, that the dependence on R close to Rc is rather strong (the change of R is tiny

for the three uppermost curves), suggesting that the limiting distribution is attained with

a large, possibly infinite, derivative.

– 7 –
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r

0.02

0.04

0.06

0.08

Π
2

�������

2
R

����������!!!s
d N
��������

d r

Figure 2: Same as in the previous figure but in configuration space. The various curves (brom

bottom up) correspond to R = 0.45, 0.46, 0.47, 0.4706, 0.47064, 0.47065, and Rc = 0.470673.

Figure 3 illustrates yet better this point. It turns out that the maximum value of the

above density depends on (Rc − R) as a simple square root. When left unconstrained, the

best fitted power was always within ±1% of 1/2, remaining very stable against adding or

removing initial/final data points. The solid line in figure 3 shows the fit where the power

was actually fixed to 1/2. Similarly, we have found that the width of the distribution also

behaves as c1 + c2(Rc −R)1/2, with finite coefficients c1, c2. Therefore, indeed, the limiting

distribution exists and is approached with an infinite derivative w.r.t. R. At the transition

point, gravitons are emitted preferentially from half the distance from the source’s edges.

In [1] we have already analyzed the total multiplicity of emitted gravitons since it is

related to the derivative of the action with respect to R. We found that it approaches a

finite constant at R−
c with a square root branch point at Rc (see figure 5 of [1]), with a

“best fit” given by 0.138 − 0.46(Rc − R)0.523. This is hardly surprising given the above

results for the differential distribution.

To close the circle we have also compared the Fourier transform of the p-space solution

h(k) with h(r) obtained directly from the solution ρ(r) in x-space. The two agree locally

within 2–3%, the discrepancy being caused again by the finite discretization in momen-

tum space. This is reassuring, not only in confirming again the consistency of the whole

procedure, but also because, due to the infrared behaviour, transition between x- and p-

representations is rather subtle. In particular, we find (cf. again figure 1 )that the emission

amplitude h(k) (and also βi(k)) diverges at small momenta as

h(k) ∼ 1√
k

, (5.2)

and is exponentially damped at large k. Consequently, the action (2.9) is IR divergent and,

even if the divergence is physically irrelevant (cf. the infinite Coulomb phase), has to be

treated with care numerically.

– 8 –



J
H
E
P
0
9
(
2
0
0
8
)
0
2
4

0.44 0.445 0.45 0.455 0.46 0.465 0.47
R

0.04

0.05

0.06

0.07

0.08

·max

Figure 3: The maximum of the spatial density of gravitons as a function of R. Points are from

solving eqs.(2.11). The linear fit, 0.083 − 0.28(Rc − R)1/2, is also shown.

The large k behaviour of the spectrum can be qualitatively assessed from figure 4. The

distribution resembles much more an exponential than the gaussian shape of the sources

we have put in (this is the C case of section 3). Actually, a rather interesting structure

emerges, as shown in that figure. Let us use units in which L = 1 and increase R (i.e. the

energy), starting from very small values. In that perturbative region the spectrum appears

to consist of two exponentials separated by a “knee”, i.e. the slope at small k, is smaller

than the one at large k. However, as we increase R towards its critical value, the knee

tends to disappear leaving behind an almost perfect exponential exp(−b|k|). The slope b of

the exponential (determined mainly by L in the perturbative region) now strongly depends

on (R−Rc). Figure 5 illustrates the points we just made and indicates that the slope also

has a rather singular behaviour, possibly of the form b ∼ c1 + c2(R − Rc)
γ .

One can finally try to determine the total multiplicity by integrating the spectra (either

in x or in p space). At small R/L one finds:

〈N〉 ∼ Gs(R/L)2 . (5.3)

Given that the average transverse energy is O(1/L) this corresponds to an average total

transverse energy in the emitted gravitons given by:

〈ET 〉 ∼
√

s(R/L)3 ≪ √
s . (5.4)

However, as one approaches Rc, this quantity clearly becomes O(
√

s) possibly implying

that the transverse energy becomes a good estimate of the total radiated energy but also,

unfortunately, that imposing energy-conservation, i.e. taking into account the back-reaction

on the sources, becomes mandatory.

– 9 –
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Figure 4: A logarithmic plot of the distribution (5.1) for R = .10, .20, .40, 60, .80, .82, .83 (bottom

to top).
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Figure 5: R dependence of the slopes from the previous figure (determined locally from 10 < k <

12.5).

6. Beyond the critical point: a first attempt

There is obviously much interest in extending the numerical analysis into a BH phase.

Although precise solutions for R > Rc are not available at this stage, we can get an

approximate picture of their complicated structure using the momentum-space approach.

As already explained in section 4, the discretized equations of motion (4.2) can be solved

exactly (though numerically) as an algebraic system. This can be done for arbitrary R,

without any use of the iterative approach. The price is, of course, that we deal with a non-

linear system of 3n equations for 3n variables, which is quite challenging even numerically.
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Figure 6: Two complex trajectories h(k) (at k = k3 = 2.) parametrized by R moving through the

critical point.

Restricting to identical sources reduces a problem to n variables. Still there are 3n solutions,

and Mathematica has to generate all of them before we can choose the physically acceptable

ones. To produce all 729 solutions for n = 6 takes about 2.5 hours hence, in practice, the

method is limited at present to n ≤ 5. Still, even such a crude discretization reasonably

reproduces the main features of, say, the momentum distribution. Therefore we go ahead

with the simplified problem here and look for complex solutions above Rc leaving the,

obviously possible, refinements for the future.

Figure 6 shows the behaviour of two complex trajectories1 as R moves from the disper-

sive to the BH phase. We show only a discrete series of points with varying step ∆R (see

below) to give also an idea of the speed (in R) along a trajectory. For n = 5, the critical

point is at Rc = 0.3193. We begin by following the left trajectory (also reproduced by the

recursion in this region) deep inside the dispersive phase (at R = 0.15): it moves towards

its critical value xc along the real axis, as expected. Checking the stability matrix at the

fixed point we verified that, indeed, this is the only solution which is stable against the

iterations (4.6). The second solution (which starts above xc in the figure) is also real, but

unstable. We have chosen it to be the one that matches the recursive solution at xc. The

sampling points are separated by ∆R = 0.01 at the beginning of the recursive solution and

then, as we approach Rc, the coarse graining was reduced to ∆R = 0.001. One readily sees

that while approaching xc the variation w.r.t. R increases in agreement with the findings

of section 5. For the unstable trajectory ∆R was set to 0.001 from the beginning since we

1By a trajectory we mean here a path traced by h(k), at one value of k, while changing R.
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started tracing it much closer to Rc. Again, its velocity increases as we go towards the

critical point. As soon as one goes above Rc both trajectories acquire (complex conjugate)

imaginary pats y(R). Closer inspection shows that these imaginary parts grow like a square

root,
√

x − xc, as typical for a threshold behaviour. Since both trajectories are complex

conjugate to each other, figure 6 implies that the real part of the left trajectory continues

to increase while that of the right trajectory changes from decreasing to increasing as we go

through Rc. Interestingly, the trajectories reveal a rich structure even when we go deeper

inside the BH phase. We have followed them up to R = 0.65 changing the R-resolution:

∆R = 0.001 → 0.01 → 0.005 → 0.01 and finally to ∆R = 0.003 along the last segments. In

these regions the trajectories appear to saturate. It remains to be seen if all these detailed

features, like bending or saturation, are generic or are just artefacts of our small value of

n. For example, we know that increasing n would move Rc by more than 30%.

However, one thing is clear: for R > Rc classical solutions of (4.6) (and consequently

also the on shell effective action) develop imaginary parts. This is turn implies a new ab-

sorption of the elastic amplitude (on top of the one due to graviton production) calling for

the opening of some new channel. The whole mechanism is somewhat reminiscent of the

classic discussion of the “decay of the false vacuum” by Coleman and de Luccia [12] as a

tunnelling process described through the contribution of complex saddle points to the func-

tional integral. Use of similar ideas in this new context is presently under investigation [13].

Let us conclude by stressing that the non-linearities captured by equations (4.6) are

essential for the above instabilities to occur. The gravitational attraction alone exists

already in the lowest Born diagram, but it is not sufficient to produce the non-linearities

of the metric that are essential for the buildup of CTS. Our results confirm that, instead,

the class of diagrams selected in [2] appear to be sufficient for bringing out the emergence

of such phenomena.

Acknowledgments

We wish to thank M. Ciafaloni for interesting discussions and for communicating to us

some preliminary results from ref. [13] prior to publication. We also acknowledge the warm

hospitality of the Galileo Galilei Institute in Arcetri (Florence, Italy) during the completion

phase of this work.

Note added in proofs. Actually, eq. (2.12) can be proven by using the results of A.

Gervois and H. Navelet, Jour. Math. Phys. 26 (1985) 633 (see their table 1). We are

grateful to Dr. F. Piazza for pointing out to us the existence of this work.

References

[1] G. Veneziano and J. Wosiek, Exploring an S-matrix for gravitational collapse,

arXiv:0804.3321.

[2] D. Amati, M. Ciafaloni and G. Veneziano, Towards an S-matrix description of gravitational

collapse, JHEP 02 (2008) 049 [arXiv:0712.1209].

– 12 –

http://arxiv.org/abs/0804.3321
http://jhep.sissa.it/stdsearch?paper=02%282008%29049
http://arxiv.org/abs/0712.1209


J
H
E
P
0
9
(
2
0
0
8
)
0
2
4

[3] D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at Planckian energies, Phys.

Lett. B 197 (1987) 81; Classical and quantum gravity effects from Planckian energy

superstring collisions, Int. J. Mod. Phys. A 3 (1988) 1615.

[4] L.N. Lipatov, High-energy scattering in QCD and in quantum gravity and two-dimensional

field theories, Nucl. Phys. B 365 (1991) 614;

R. Kirschner and L. Szymanowski, Effective action for high-energy scattering in gravity,

Phys. Rev. D 52 (1995) 2333 [hep-th/9412087].

[5] D. Amati, M. Ciafaloni and G. Veneziano, Effective action and all order gravitational eikonal

at Planckian energies, Nucl. Phys. B 403 (1993) 707; Higher order gravitational deflection

and soft bremsstrahlung in Planckian energy superstring collisions, Nucl. Phys. B 347 (1990)

550.

[6] G. Marchesini and E. Onofri, High energy gravitational scattering: a numerical study, JHEP

06 (2008) 104 [arXiv:0803.0250].

[7] D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions,

Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034];

H. Yoshino and Y. Nambu, Black hole formation in the grazing collision of high- energy

particles, Phys. Rev. D 67 (2003) 024009 [gr-qc/0209003];

S.B. Giddings and V.S. Rychkov, Black holes from colliding wavepackets, Phys. Rev. D 70

(2004) 104026 [hep-th/0409131].

[8] E. Kohlprath and G. Veneziano, Black holes from high-energy beam-beam collisions, JHEP 06

(2002) 057 [gr-qc/0203093].

[9] A.M. Abrahams and C.R. Evans, Critical behavior and scaling in vacuum axisymmetric

gravitational collapse, Phys. Rev. Lett. 70 (1993) 2980; Universality in axisymmetric vacuum

collapse, Phys. Rev. D 49 (1994) 3998.

[10] M.W. Choptuik, E.W. Hirschmann, S.L. Liebling and F. Pretorius, Critical collapse of the

massless scalar field in axisymmetry, Phys. Rev. D 68 (2003) 044007 [gr-qc/0305003].

[11] M.W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field,

Phys. Rev. Lett. 70 (1993) 9;

for a review, see e.g. C. Gundlach, Critical phenomena in gravitational collapse,

gr-qc/0210101.

[12] S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D

21 (1980) 3305.

[13] M. Ciafaloni and D. Colferai, S-matrix and quantum tunneling in gravitational collapse,

arXiv:0807.2117.

– 13 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB197%2C81
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB197%2C81
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA3%2C1615
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB365%2C614
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD52%2C2333
http://arxiv.org/abs/hep-th/9412087
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB403%2C707
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB347%2C550
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB347%2C550
http://jhep.sissa.it/stdsearch?paper=06%282008%29104
http://jhep.sissa.it/stdsearch?paper=06%282008%29104
http://arxiv.org/abs/0803.0250
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C044011
http://arxiv.org/abs/gr-qc/0201034
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C024009
http://arxiv.org/abs/gr-qc/0209003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C104026
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C104026
http://arxiv.org/abs/hep-th/0409131
http://jhep.sissa.it/stdsearch?paper=06%282002%29057
http://jhep.sissa.it/stdsearch?paper=06%282002%29057
http://arxiv.org/abs/gr-qc/0203093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C70%2C2980
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C3998
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C044007
http://arxiv.org/abs/gr-qc/0305003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C70%2C9
http://arxiv.org/abs/gr-qc/0210101
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD21%2C3305
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD21%2C3305
http://arxiv.org/abs/0807.2117

